Table of contents

  • This session has been presented June 27, 2008.

Description

  • Speaker

    Jeroen Demeyer - Universiteit Gent

Consider the projective space P^n over a finite field F_q. A hypersurface is defined by one homogenous equation with coefficients in F_q. For d going to infinity, we show that the probability that a hypersurface of degree d is nonsingular approaches 1/\zeta_{P^n (n+1)}. This is analogous to the well-known fact that the probability that an integer is squarefree equals 1/\zeta(2) = 6/\pi^2. This is a special case of the results in Bjorn Poonen's paper ``Bertini Theorems over Finite Fields'', where he computes the probability that a given variety intersects a random hypersurface. Poonen uses the full power of algebraic geometry, whereas the special case can be proven using only elementary linear algebra and properties of finite fields.

Next sessions

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • November 29, 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.  Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptography

    • Asymmetric primitive

    • Mode and protocol

  • Post-quantum Group-based Cryptography

    • December 20, 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Delaram Kahrobaei - The City University of New York

Show previous sessions