Description
Secure multi-party computing often enhances efficiency by leveraging correlated randomness. Recently, Boyle et al. showcased the effectiveness of pseudorandom correlation generators (PCGs) in producing substantial correlated (pseudo)randomness, specifically for two-party random oblivious linear evaluations (OLEs). This process involves minimal interactions and subsequent local computations, enabling secure two-party computation with silent pre-processing. The methodology is extendable to N-party through programmable PCGs. However, existing programmable PCGs for OLEs face limitations, as they generate OLEs exclusively over large fields and relying on a recent divisible ring-LPN assumption lacking a robust security foundation. In this talk, I'll introduce the Quasi-Abelian Syndrome Decoding Problem, a broader interpretation of the Quasi-Cyclic decoding problem. The hardness of this new problem enables constructing programmable PCGs for OLE correlation on any field Fq (with q>2). This instantiation is resilient to attacks on the linear test framework and allows a reduction in search to decision, addressing weaknesses in previous constructions. This work is based on a joint work with Maxime Bombar, Geoffroy Couteau and Alain Couvreur.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Speaker : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-