Description
Secure multi-party computing often enhances efficiency by leveraging correlated randomness. Recently, Boyle et al. showcased the effectiveness of pseudorandom correlation generators (PCGs) in producing substantial correlated (pseudo)randomness, specifically for two-party random oblivious linear evaluations (OLEs). This process involves minimal interactions and subsequent local computations, enabling secure two-party computation with silent pre-processing. The methodology is extendable to N-party through programmable PCGs. However, existing programmable PCGs for OLEs face limitations, as they generate OLEs exclusively over large fields and relying on a recent divisible ring-LPN assumption lacking a robust security foundation. In this talk, I'll introduce the Quasi-Abelian Syndrome Decoding Problem, a broader interpretation of the Quasi-Cyclic decoding problem. The hardness of this new problem enables constructing programmable PCGs for OLE correlation on any field Fq (with q>2). This instantiation is resilient to attacks on the linear test framework and allows a reduction in search to decision, addressing weaknesses in previous constructions. This work is based on a joint work with Maxime Bombar, Geoffroy Couteau and Alain Couvreur.
Next sessions
-
Efficient zero-knowledge proofs and arguments in the CL framework
Speaker : Agathe Beaugrand - Institut de Mathématiques de Bordeaux
The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…] -
Constant-time lattice reduction for SQIsign
Speaker : Sina Schaeffler - IBM Research
SQIsign is an isogeny-based signature scheme which has recently advanced to round 2 of NIST's call for additional post-quantum signatures. A central operation in SQIsign is lattice reduction of special full-rank lattices in dimension 4. As these input lattices are secret, this computation must be protected against side-channel attacks. However, known lattice reduction algorithms like the famous[…] -
Circuit optimisation problems in the context of homomorphic encryption
Speaker : Sergiu Carpov - Arcium
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but[…] -
Cycles of pairing-friendly abelian varieties
Speaker : Maria Corte-Real Santos - ENS Lyon
A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first[…]-
Cryptography
-