Table of contents

  • This session has been presented September 20, 2002.

Description

  • Speaker

    Olivier Orcière - Thales

Après avoir décrit le problème du "sac-à-dos" qui appartient à la classe de complexité NP, nous montrons comment il peut servir d' infrastructure à des cryptosystèmes à clef publique. Nous montrons dans un deuxième temps qu'il est possible de cryptanalyser la plupart de ces systèmes en utilisant de manière astucieuse l'algorithme LLL.

Next sessions

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • November 29, 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.  Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptography

    • Asymmetric primitive

    • Mode and protocol

  • Post-quantum Group-based Cryptography

    • December 20, 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Delaram Kahrobaei - The City University of New York

  • Euclidean lattice and PMNS: arithmetic, redundancy and equality test

    • January 31, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Fangan Yssouf Dosso - Laboratoire SAS, École des Mines de Saint-Étienne

    The Polynomial Modular Number System (PMNS) is an integer number system that aims to speed up arithmetic operations modulo a prime number p. This system is defined by a tuple (p, n, g, r, E), where p, n, g and r are positive integers, and E is a polynomial with integer coefficients, having g as a root modulo p. Arithmetic operations in PMNS rely heavily on Euclidean lattices. Modular[…]
Show previous sessions