Table of contents

  • This session has been presented November 14, 2008.

Description

  • Speaker

    David Lubicz - DGA et Université Rennes I

La cryptographie à clef publique, qui fut inventée dans les années soixante-dix par W. Diffie et M. Hellman, apporte par rapport à la cryptographie symétrique un certain nombre de fonctionnalités particulièrement intéressantes pour les applications pratiques. Sa mise en oeuvre repose le plus souvent sur la difficulté calculatoire de certains problèmes issus de la théorie des nombres. De là, on peut déduire des fonctions à sens unique, des fonctions trappes puis construire et prouver par réduction des protocoles permettant de répondre à des objectifs de sécurité variés, les plus courants étant le chiffrement ou la signature numérique.<br/> Un problème classiquement utilisé en cryptographie asymétrique est le problème du logarithme discret qui est par exemple à la base de toute la cryptographie sur courbe elliptique. Le problème du logarithme discret permet de construire des fonctions supposées à sens unique à partir de familles de groupes disposant d'un certain nombre de bonnes propriétés. Dans ce mémoire, nous présentons des techniques permettant de définir, représenter et calculer des familles de groupes utilisables dans des cryptosystèmes à base de logarithme discret. Des considérations de sécurité ou de performance nous amènent à revisiter d'un point de vue algorithmique des concepts développés dans les années soixante pour les besoins de la théorie des nombres et de la géométrie arithmétique : citons par exemple la multiplication complexe, les fonctions thêta algébriques, la cohomologie rigide, la théorie de Serre-Tate.

Next sessions

  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • November 21, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • November 28, 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • December 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

  • Predicting Module-Lattice Reduction

    • December 19, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

Show previous sessions