Description
La cryptographie à clef publique, qui fut inventée dans les années soixante-dix par W. Diffie et M. Hellman, apporte par rapport à la cryptographie symétrique un certain nombre de fonctionnalités particulièrement intéressantes pour les applications pratiques. Sa mise en oeuvre repose le plus souvent sur la difficulté calculatoire de certains problèmes issus de la théorie des nombres. De là, on peut déduire des fonctions à sens unique, des fonctions trappes puis construire et prouver par réduction des protocoles permettant de répondre à des objectifs de sécurité variés, les plus courants étant le chiffrement ou la signature numérique.<br/> Un problème classiquement utilisé en cryptographie asymétrique est le problème du logarithme discret qui est par exemple à la base de toute la cryptographie sur courbe elliptique. Le problème du logarithme discret permet de construire des fonctions supposées à sens unique à partir de familles de groupes disposant d'un certain nombre de bonnes propriétés. Dans ce mémoire, nous présentons des techniques permettant de définir, représenter et calculer des familles de groupes utilisables dans des cryptosystèmes à base de logarithme discret. Des considérations de sécurité ou de performance nous amènent à revisiter d'un point de vue algorithmique des concepts développés dans les années soixante pour les besoins de la théorie des nombres et de la géométrie arithmétique : citons par exemple la multiplication complexe, les fonctions thêta algébriques, la cohomologie rigide, la théorie de Serre-Tate.
Next sessions
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-