Description
In this work, we apply the rebound attack to the AES based SHA-3 candidate LANE. The hash function LANE uses a permutation based compression function, consisting of a linear message expansion and 6 parallel lanes. In the rebound attack on LANE, we apply several new techniques to construct a collision for the full compression function of LANE-256 and LANE-512. Using a relatively sparse truncated differential path, we are able to solve for a valid message expansion and colliding lanes independently. Additionally, we are able to apply the inbound phase more than once by exploiting the degrees of freedom in the parallel AES states. This allows us to construct semi-free-start collisions for full LANE-256 with $2^{96}$ compression function evaluations and $2^{88}$ memory, and for full LANE-512 with $2^{224}$ compression function evaluations and $2^{128}$ memory. This is a joint work with K. Matusiewicz, I. Nikolic, Y. Sasaki and M. Schläffer.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York