Description
We present HAETAE (Hyperball bimodAl modulE rejecTion signAture schemE), a new lattice-based signature scheme, which we submitted to the Korean Post-Quantum Cryptography Competition for standardization. Like the NIST-selected Dilithium signature scheme, HAETAE is based on the Fiat-Shamir with Aborts paradigm, but our design choices target an improved complexity/compactness compromise that is highly relevant for many space-limited application scenarios. We primarily focus on reducing signature and verification key sizes so that signatures fit into one TCP or UDP datagram while preserving a high level of security against a variety of attacks. As a result, our scheme has signature and verification key sizes up to 40% and 25% smaller, respectively, compared than Dilithium.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry; Rachelle Heim Boissier; Épiphane Nouetowa; Dung Bui. Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-