Table of contents

  • This session has been presented November 20, 2015.

Description

  • Speaker

    Cécile Pierrot - UPMC LIP6

Public key cryptography is based on hard problems, such as the discrete logarithm problem (DLP). In this talk, I focus on the discrete logarithm problem in finite fields:<br/> Given GF(q^k) and a generator g of GF(q^k)*, we say that we solve the DLP in GF(q^k) if, for any arbitrary element h in GF(q^k)*, we are able to recover an integer x such that: g^x = h. When the characteristic is small compared to the extension degree, the best complexity that can be achieved is quasipolynomial in log(q^k). I present here a simplified version of this quasipolynomial algorithm that has several advantages:<br/> 1/ I swear it is simple, or at least I will do my best to make it understandable.<br/> 2/ Together with additional ideas, simplifying the original settings permits to decrease the complexity of relation collection, linear algebra and extension phases, that dominate in practice all discrete logarithms computations. Namely, the complexity is reduced from O(q^7) to O(q^6). 3/ With our simplified settings, the complexity achieved in the general case became similar to the complexity known for Kummer (or twisted Kummer) extensions. Thus it permitted to achieve a discrete log computation in GF_(3^(5*497)), that is not only the highest cardinality reached in characteristic 3, but also not a special extension field as previous target fields were.<br/> This is a joint work with Antoine Joux.

Next sessions

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions