Description
Public key cryptography is based on hard problems, such as the discrete logarithm problem (DLP). In this talk, I focus on the discrete logarithm problem in finite fields:<br/> Given GF(q^k) and a generator g of GF(q^k)*, we say that we solve the DLP in GF(q^k) if, for any arbitrary element h in GF(q^k)*, we are able to recover an integer x such that: g^x = h. When the characteristic is small compared to the extension degree, the best complexity that can be achieved is quasipolynomial in log(q^k). I present here a simplified version of this quasipolynomial algorithm that has several advantages:<br/> 1/ I swear it is simple, or at least I will do my best to make it understandable.<br/> 2/ Together with additional ideas, simplifying the original settings permits to decrease the complexity of relation collection, linear algebra and extension phases, that dominate in practice all discrete logarithms computations. Namely, the complexity is reduced from O(q^7) to O(q^6). 3/ With our simplified settings, the complexity achieved in the general case became similar to the complexity known for Kummer (or twisted Kummer) extensions. Thus it permitted to achieve a discrete log computation in GF_(3^(5*497)), that is not only the highest cardinality reached in characteristic 3, but also not a special extension field as previous target fields were.<br/> This is a joint work with Antoine Joux.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-