Description
Les formules de Thomae, connues depuis le 19ème siècle, sont des relations algébriques entre les points branches d’une courbe hyperelliptique et les thêta constantes paramétrant la variété jacobienne associée à la courbe. Depuis la fin des années 80, plusieurs auteurs se sont intéressés à une généralisation de ces formules aux courbes cycliques. L’objet de cette thèse est de généraliser la construction de Farkas et Zemel afin d’obtenir des formules pour les courbes dont le groupe de Galois sur la droite projective est résoluble.
Next sessions
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Speaker : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-