Table of contents

  • This session has been presented October 15, 2004.

Description

  • Speaker

    Clauss Diem - Universität Essen

The purpose of the talk is to present the following heuristic result.<br/> Let a, b in R with 0 < a < b. Then discrete logarithms in E(F_q^n), where q is a prime power, a log_2(q) \leq n \leq b \log_2(q)$ and E/F_q^n is any elliptic curve over F_q^n, can be solved in probabilistic subexponential time L[3/4].<br/> The algorithm is a variant of a recent index calculus algorithm by Gaudry. The main difference is that we increase the factor base.

Previous sessions

Show previous sessions