Description
Supersingular isogeny graphs have been used in the Charles–Goren–Lauter cryptographic hash function and the supersingular isogeny Diffie–Hellman (SIDH) protocole of De\,Feo and Jao. A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie–Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to $\FF_p$-rational curves $E$ and $\FF_p$-rational isogenies then oriented by the quadratic subring $\ZZ[\pi] \subset \End(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$. We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.<br/> By imposing the data of an orientation by an imaginary quadratic ring $\OO$, we obtain an augmented category of supersingular curves on which the class group $\Cl(\OO)$ acts faithfully and transitively. This idea is already implicit in the CSIDH protocol, in which supersingular curves over $\FF_p$ are oriented by the Frobenius subring $\ZZ[\pi] \simeq \ZZ[\sqrt{-p}]$. In contrast we consider an elliptic curve $E_0$ oriented by a CM order $\OO_K$ of class number one. To obtain a nontrivial group action, we consider $\ell$-isogeny chains, on which the class group of an order $\OO$ of large index $\ell^n$ in $\OO_K$ acts, a structure we call a whirlpool. The map from $\ell$-isogeny chains to its terminus forgets the structure of the orientation, and the original base curve $E_0$, giving rise to a generic supersingular elliptic curve. Within this general framework we define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol, which has fewer restrictions on the proportion of supersingular curves covered and on the torsion group structure of the underlying curves. Moreover, the group action can be carried out effectively solely on the sequences of moduli points (such as $j$-invariants) on a modular curve, thereby avoiding expensive isogeny computations, and is further amenable to speedup by precomputations of endomorphisms on the base curve $E_0$.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=721072***2120&autojoin
Next sessions
-
Efficient zero-knowledge proofs and arguments in the CL framework
Speaker : Agathe Beaugrand - Institut de Mathématiques de Bordeaux
The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…] -
Constant-time lattice reduction for SQIsign
Speaker : Sina Schaeffler - IBM Research
SQIsign is an isogeny-based signature scheme which has recently advanced to round 2 of NIST's call for additional post-quantum signatures. A central operation in SQIsign is lattice reduction of special full-rank lattices in dimension 4. As these input lattices are secret, this computation must be protected against side-channel attacks. However, known lattice reduction algorithms like the famous[…] -
Circuit optimisation problems in the context of homomorphic encryption
Speaker : Sergiu Carpov - Arcium
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but[…] -
Cycles of pairing-friendly abelian varieties
Speaker : Maria Corte-Real Santos - ENS Lyon
A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first[…]-
Cryptography
-