Description
Supersingular isogeny graphs have been used in the Charles–Goren–Lauter cryptographic hash function and the supersingular isogeny Diffie–Hellman (SIDH) protocole of De\,Feo and Jao. A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie–Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to $\FF_p$-rational curves $E$ and $\FF_p$-rational isogenies then oriented by the quadratic subring $\ZZ[\pi] \subset \End(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$. We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.<br/> By imposing the data of an orientation by an imaginary quadratic ring $\OO$, we obtain an augmented category of supersingular curves on which the class group $\Cl(\OO)$ acts faithfully and transitively. This idea is already implicit in the CSIDH protocol, in which supersingular curves over $\FF_p$ are oriented by the Frobenius subring $\ZZ[\pi] \simeq \ZZ[\sqrt{-p}]$. In contrast we consider an elliptic curve $E_0$ oriented by a CM order $\OO_K$ of class number one. To obtain a nontrivial group action, we consider $\ell$-isogeny chains, on which the class group of an order $\OO$ of large index $\ell^n$ in $\OO_K$ acts, a structure we call a whirlpool. The map from $\ell$-isogeny chains to its terminus forgets the structure of the orientation, and the original base curve $E_0$, giving rise to a generic supersingular elliptic curve. Within this general framework we define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol, which has fewer restrictions on the proportion of supersingular curves covered and on the torsion group structure of the underlying curves. Moreover, the group action can be carried out effectively solely on the sequences of moduli points (such as $j$-invariants) on a modular curve, thereby avoiding expensive isogeny computations, and is further amenable to speedup by precomputations of endomorphisms on the base curve $E_0$.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=721072***2120&autojoin
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-