Description
Soit S une suite d'éléments d'un groupe fini G noté multiplicativement ; le problème du sac à dos consiste à trouver une sous-suite de S dont le produit vaut un élément donné z de G. Des méthodes très efficaces pour le résoudre existent quand G=Z/nZ mais elles nous abandonnent lorsque l'on change de groupe : on peut en effet prouver qu'aucun algorithme générique (c'est-à-dire, en un sens, qui s'applique à tout groupe G) ne peut résoudre ce problème en moins de O(sqrt(#G)) opérations. Si une approche de type « pas de bébé, pas de géant » réussit avec pour complexité O(sqrt(#G)) en temps et en mémoire, il n'est pas évident de faire mieux. Dans un premier temps, cet exposé aura pour but d'expliquer comment adapter certaines idées de Pollard à ce contexte afin d'obtenir un algorithme en temps O(sqrt(#G)) et coût mémoire négligeable. Ensuite, nous présenterons certaines applications, notamment à la recherche d'isogénie entre deux courbes elliptiques.<br/> Ces travaux sont conjoints avec Andrew V. Sutherland.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York