Description
Soit S une suite d'éléments d'un groupe fini G noté multiplicativement ; le problème du sac à dos consiste à trouver une sous-suite de S dont le produit vaut un élément donné z de G. Des méthodes très efficaces pour le résoudre existent quand G=Z/nZ mais elles nous abandonnent lorsque l'on change de groupe : on peut en effet prouver qu'aucun algorithme générique (c'est-à-dire, en un sens, qui s'applique à tout groupe G) ne peut résoudre ce problème en moins de O(sqrt(#G)) opérations. Si une approche de type « pas de bébé, pas de géant » réussit avec pour complexité O(sqrt(#G)) en temps et en mémoire, il n'est pas évident de faire mieux. Dans un premier temps, cet exposé aura pour but d'expliquer comment adapter certaines idées de Pollard à ce contexte afin d'obtenir un algorithme en temps O(sqrt(#G)) et coût mémoire négligeable. Ensuite, nous présenterons certaines applications, notamment à la recherche d'isogénie entre deux courbes elliptiques.<br/> Ces travaux sont conjoints avec Andrew V. Sutherland.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-