Description
La multiplication est une opération arithmétique coûteuse comparativement à l'addition. Aussi il est intéressant, étant donné une application, de minimiser le nombre de produits à effectuer pour la calculer. Dans cette étude, nous nous restreignons au cas des applications bilinéaires.<br/> En effet, parmi les applications bilinéaires, nous étions intéressés en premier lieu par la multiplication polynomiale. Ce problème ancien a déjà été très étudié. La première découverte fut celle de Karatsuba (1962) qui montra que l'on peut effectuer le produit de deux polynômes de degré~$2$ en n'utilisant que $3$ produits au lieu de $4$ avec l'algorithme quadratique. Puis Toom \& Cook (1963) montrèrent que $5$ multiplications suffisent à calculer le produit de polynômes de degré~$3$. En généralisant le problème aux polynômes de degré~$n$ fixé, on définit alors $M(n)$ le nombre minimal de produits à effectuer pour une telle multiplication. Le calcul de $M(n)$ est difficile et on ne dispose bien souvent que de bornes supérieures, de formules sans preuve de leur optimalité. En 2005, Montgomery effectua une recherche exhaustive de formules pour la multiplication de polynômes de degré~$5$ et trouva de nouvelles formules pour le degré~$6$ et ~$7$. Nous avons alors cherché à généraliser son approche et réduire son coût grâce à une formalisation en terme d'espace vectoriel. Nous présentons ainsi un algorithme permettant d'énumérer toutes les formules contenant exactement $k$ produits calculant une application bilinéaire. Cet algorithme permet de calculer le nombre minimal de produits à calculer pour certaines applications bilinéaires. Enfin, notre algorithme ne se restreignant pas au produit de polynômes, nous avons pu appliquer cet algorithme à d'autres problèmes tels que~: le produit court, la multiplication dans une extension de corps ou encore de matrices.
Next sessions
-
Dual attacks in code-based (and lattice-based) cryptography
Speaker : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]