Table of contents

  • This session has been presented September 28, 2018.

Description

  • Speaker

    Fabrice Mouhartem - ENS Lyon

Group encryption (GE) is the natural encryption analogue of group signatures in that it allows verifiably encrypting messages for some anonymous member of a group while providing evidence that the receiver is a properly certified group member. Should the need arise, an opening authority is capable of identifying the receiver of any ciphertext. As intro- duced by Kiayias, Tsiounis and Yung (Asiacrypt’07), GE is motivated by applications in the context of oblivious retriever storage systems, anony- mous third parties and hierarchical group signatures. This paper provides the first realization of group encryption under lattice assumptions. Our construction is proved secure in the standard model (assuming interac- tion in the proving phase) under the Learning-With-Errors (LWE) and Short-Integer-Solution (SIS) assumptions. As a crucial component of our system, we describe a new zero-knowledge argument system allowing to demonstrate that a given ciphertext is a valid encryption under some hid- den but certified public key, which incurs to prove quadratic statements about LWE relations. Specifically, our protocol allows arguing knowledge of witnesses consisting of X ∈ ℤ_q^{m×n}, s ∈ ℤ_q^n and a small-norm e ∈ ℤ^m which underlie a public vector b = X · s + e ∈ ℤ_q^m while simultaneously proving that the matrix X ∈ ℤ_q^{m×n} has been correctly certified. We believe our proof system to be useful in other applications involving zero-knowledge proofs in the lattice setting. lien: rien

Next sessions

  • Predicting Module-Lattice Reduction

    • December 19, 2025 (13:45 - 14:45)

    • Batiment 22-23 salle 16 (en face de l'amphi Lebesgue)

    Speaker : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions