Description
L'algorithme XL est un algorithme utilisé en cryptographie pour déterminer une solution d'un système polynômial dans un corps fini. Cet algorithme est assez efficace : il peut en effet résoudre des cryptosystèmes engendrés par des registres filtrés en temps polynômial avec un nombre de couple clair-chiffré polynômial en la taille de la clef.<br/> Il existait auparavant différents algorithmes de résolution de systèmes polynômiaux comme le calcul des bases de Gröbner. Nous allons tout d'abord nous intéresser à certains algorithmes de calcul des bases de Gröbner pour comprendre les calculs effectuées et les critères développés. Puis, nous verrons la structure de l'algorithme XL et les remarques faites par l'auteur sur cet algorithme. Enfin, nous étudierons ce que calcul exactement l'algorithme XL du point de vue des bases de Gröbner et proposerons un algorithme émulé utilisant le calcul de bases de Gröbner. A partir de cet algorithme émulé, nous effectuerons des comparaisons sur le cryptosystème HFE.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-