Description
n 2001 K. Kedlaya suggested an algorithm to compute the zeta function of a hyperelliptic curve over a finite field of small odd characteristic. The basic idea of his approach is to compute the explicit Frobenius action on the Monsky-Washniter cohomology in dimension one. Later his method was extended by P. Gaudry and N. Guerel to superelliptic curve and by J. Denef and F. Vercauteren to hyperelliptic curves in even characteristic.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York