Sommaire

  • Cet exposé a été présenté le 16 décembre 2005.

Description

  • Orateur

    Yaacov Kopeliovich

In this talk we apply Thomae formulas to obtain algebraic relations satisfied by Riemann surfaces that are cyclic covers of the Sphere. We focus on the genus 2 case and then give an example of a higher genus case (g=4) that was not known before. The conjectural connection of these identities as well as Thomae formulas to the moduli action of the Braid group is explained.<br/> We present a programming challenge to fully solve the g=4 problem.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.&nbsp; Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés