Description
Simulatability has established itself as a salient notion for proving the security of multi-party protocols since it entails strong security and compositionality guarantees, which are achieved by universally quantifying over all environmental behaviors of the analyzed protocol. As a consequence, however, protocols that are secure except for certain environmental behaviors are not simulatable, even if these behaviors are efficiently identifiable and thus can be prevented by the surrounding protocol. We propose a relaxation of simulatability by conditioning the permitted environmental behaviors, i.e., simulation is only required for environmental behaviors that fulfill explicitly stated constraints. This yields a more fine-grained security definition that is achievable for several protocols for which unconditional simulatability is too strict a notion. Although imposing restrictions on the environment destroys unconditional composability in general, we show that composition of a large class of conditionally secure protocols yields conditionally simulatable protocols again. Moreover, for several commonly investigated protocol classes we show that their composition yields protocols that are simulatable in the standard, unconditional sense.
Prochains exposés
-
Efficient zero-knowledge proofs and arguments in the CL framework
Orateur : Agathe Beaugrand - Institut de Mathématiques de Bordeaux
The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…] -
Constant-time lattice reduction for SQIsign
Orateur : Sina Schaeffler - IBM Research
SQIsign is an isogeny-based signature scheme which has recently advanced to round 2 of NIST's call for additional post-quantum signatures. A central operation in SQIsign is lattice reduction of special full-rank lattices in dimension 4. As these input lattices are secret, this computation must be protected against side-channel attacks. However, known lattice reduction algorithms like the famous[…] -
Circuit optimisation problems in the context of homomorphic encryption
Orateur : Sergiu Carpov - Arcium
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but[…] -
Cycles of pairing-friendly abelian varieties
Orateur : Maria Corte-Real Santos - ENS Lyon
A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first[…]-
Cryptography
-