Description
Dans cet exposé nous nous intéressons à l'interpolation polynomiale multivariée et à ses applications. Nous présenterons tout d'abord des applications connues comme le décodage en liste des codes de Reed-Solomon (pour lequel Madhu Sudan a recu le prix Nevanlinna), mais aussi des applications nouvelles comme le décodage en liste des effacements des codes de Reed-Muller ou encore l'application au calcul de l'immunité algebrique. Ce dernier concept a de trés forte aplications en cryptographie pour contrer les attaques algébriques qui récemment ont permis d'obtenir des attaques trés efficaces sur les registres linéaires filtrés, utilisés pour le chiffrement à flot ou sur certains systèmes à clé symétrique. Ensuite nous présenterons un nouvel algorithme qui permet d'effectuer l'interpolation polynomiale multivariée à plusieurs variables en temps quadratique, améliorant la complexité cubique connue jusqu'ici pour résoudre certains des problèmes précédents. Nous nous interesserons aussi au cas des attaques algebriques rapides.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-