Description
La question est la suivante. Soit X une variété algébrique sur Q, et Qbar une clôture algébrique de Q. Pour tout entier n>0 on a alors le groupe de cohomologie étale V_n de X sur Qbar à coefficients dans Z/nZ. Ce V_n est un Z/nZ-module de type fini, muni d'une action du groupe de Galois Gal(Qbar/Q). Concrètement, cela veut dire qu'on a des extensions galoisiennes finies K_n de Q, avec Gal(K_n/Q) agissant fidèlement sur V_n. Peut-on calculer ces extensions K_n, et V_n en tant que Gal(K_n/Q)-module, en temps polynomial en n ? Les résultats dans l'article `On the computation of coefficients of a modular form' (http://www.arxiv.org/abs/math.NT/0605244) montrent que ce genre de calcul peut se faire en temps polynomial dans d'autres cas que celui des points de torsion des courbes elliptiques, par exemple, pour le motif associé à la fonction tau de Ramanujan. Dans l'exposé il sera expliqué ce qui a été fait, et ce qu'on pourrait espérer faire, peut-être.
Prochains exposés
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-