Sommaire

  • Cet exposé a été présenté le 20 octobre 2006.

Description

  • Orateur

    Eva Bayer - EPFL

Soit K un corps de nombres algébriques. L'image par le plongement canonique de l'anneau des entiers, et plus généralement de tout idéal de K, est un réseau dans un espace euclidien. Plus généralement, on peut définir une notion de plongement généralisé, qui donne encore lieu à des réseaux euclidiens associés au corps de nombres, et qui permet d'avoir une beaucoup plus grande flexibilité. Cette notion est très utile pour l'étude du corps de nombres, pour construire des réseaux intéressants, et aussi pour obtenir des codes performants à la fois pour le réseau Gaussien et le réseau à évanouissements de Rayleigh. En effet, on obtient des "space-time codes" (codes espace-temps) à partir des réseaux définis comme ci-dessus. Ces réseaux ont une grande diversité, ce qui est avantageux pour obtenir des codes adaptés aux réseaux à évanouissements.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.  Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés