Description
The security of quantum key distribution protocols is often defined in terms of the information an adversary obtains by measuring his system. Such definitions are fundamentally flawed because of a locking property of the accessible information: Giving the adversary a single bit of information may increase the accessible information by more than one bit. We give examples of keys that are not exposure-resilient and can thus not safely be used for one-time pad encryption, even though they satisfy a measurement-based security definition. In the second part of the talk, we discuss a universally composable security definition for cryptographic keys and show how this stronger type of security can be achieved.<br/> This is joint work with Andor Bariska, Ueli Maurer and Renato Renner.