Sommaire

  • Cet exposé a été présenté le 01 décembre 2006.

Description

  • Orateur

    Olivier Orcière - Thales

Suite aux travaux de Bhargava sur la généralisation de la loi de Gauss sur le groupes de classes des formes quadratiques binaires, on présentera les quatre formalismes des formes quadratiques binaires utilisés et connus jusqu'à présent:<br/> - le formalisme algébrique de Gauss<br/> - le formalisme projectif de Dirichlet<br/> - le formalisme basé sur les idéaux de Schoof<br/> - le formalisme géométrique de Bhargava<br/> On montrera que ces quatre formalismes sont tous équivalents. On présentera quelques conséquences des travaux de Bhargava du point de vue cryptologique. En particulier, on présente de nouvelles formules de la loi de Gauss grâce à la représentation de Bhargava.<br/> On conclura en présentant une "nouvelle" loi de groupe sur les classes de formes cubiques binaires qui découle directement du formalisme de Bhargava.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.&nbsp; Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés