Description
Dans cet exposé je présenterai deux méthodes différentes pour la construction des équations des courbes non-hyperelliptiques de genre $3$ provenant des facteurs Q-simples A_f principalement polarisés de J(X_0(N)), où X_0(N) repésente la courbe modulaire associée à Gamma_0(N)$. La première méthode, qui ne s'applique qu'aux courbes modulaires, est basée sur le calcul du morphisme canonique des courbes non hyperelliptiques de genre 3 en utilisant des relations algébriques entre éléments d'une base integrale de l'espace S_2 (A_f) des cusp forms. Ces courbes admettent tous des modèles définis sur Q avec des petits coefficients. L'autre méthode est basée sur la résolution explicite du problème de Torelli en dimension 3 : A partir d'une variété abélienne A=C^3 /(Z^3+W Z^3) donnée par sa matrice de périodes W dans H_3 et provenant de la Jacobienne d'une courbe non hyperelliptique de genre 3, trouver l'équation d'un bon modèle de cette courbe (à isomorphisme près).
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York