Sommaire

  • Cet exposé a été présenté le 28 septembre 2007.

Description

  • Orateur

    Aurélie Bauer - Université de Versailles

En 1996, Coppersmith introduit deux techniques basées sur la réduction de réseaux permettant de retrouver de petites racines d'équations polynomiales. Une de ces techiques s'applique au cas d'équations modulaires en une variable, l'autre concerne les équations entières à deux variables. Depuis, ces méthodes ont été utilisées dans de nombreuses applications cryptographiques. Pour certaines de ces applications, qui font intervenir plus de deux variables, des extensions des méthodes de Coppersmith ont été proposées. Malheureusement, ces méthodes sont heuristiques et ne permettent pas toujours de retrouver les racines recherchées quand le nombre de variables est supérieur à deux. Dans cette présentation, nous proposons une nouvelle variante de l'algorithme de Coppersmith dans le cas d'équations entières faisant intervenir trois variables et nous étudions son applicabilité. Nous nous intéressons notamment à des attaques sur RSA dans le cas d'exposants petits. Cette méthode utilise non seulement la réduction de réseaux mais également le calcul de bases de Gröbner. En principe, elle peut être généralisée dans le cas de quatre variables ou plus.

Prochains exposés

Voir les exposés passés