Description
This talk is about joint work with David Lubicz. By a classical result of Serre and Tate the deformation space of an ordinary abelian variety is given by a formal torus. In Serre-Tate coordinates the problem of canonical lifting is trivial. Unfortunately, in general it is difficult to compute the Serre-Tate parameters of a given abelian variety. Alternatively, one may use canonical coordinates which are induced by a canonical theta structure. Mumford introduced theta structures in order to construct an arithmetic moduli space of abelian varieties. We apply a multi-variate Hensel lifting procedure to a certain set of p-adic theta identities which are obtained using Mumford's formalism of algebraic theta functions. As an application we give a point counting algorithm for ordinary abelian varieties over a finite field which is quasi-quadratic in the degree of the finite field.
Prochains exposés
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-