Sommaire

  • Cet exposé a été présenté le 13 juin 2008.

Description

  • Orateur

    Orr Dunkelman - ENS-chaire France Telecom

Time-Memory Tradeoff (TMTO) attacks on stream ciphers are a serious security threat and the resistance to this class of attacks is an important criterion in the design of a modern stream cipher. TMTO attacks are especially effective against stream ciphers where a variant of the TMTO attack can make use of multiple data to reduce the off-line and the on-line time complexities of the attack (given a fixed amount of memory).<br/> In this talk we present a new approach to TMTO attacks against stream ciphers using a publicly known initial value (IV): We suggest not to treat the IV as part of the secret key material (as done in current attacks), but rather to choose in advance some IVs and apply a TMTO attack to streams produced using these IVs. We show that while the obtained tradeoff curve is identical to the curve obtained by the current approach, the new technique allows to mount the TMTO attack in a larger variety of settings. For example, if both the secret key and the IV are of length $n$, it is possible to mount an attack with data, time, and memory complexities of 2^{4n/5}, while in the current approach, either the time complexity or the memory complexity is not less than 2^n. We conclude that if the IV length of a stream cipher is less than 1.5 times the key length, there exists an attack on the cipher with data, time, and memory complexities less than the complexity of exhaustive key search.<br/> This is a joint work with Nathan Keller.

Prochains exposés

  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

  • Predicting Module-Lattice Reduction

    • 19 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

Voir les exposés passés