Description
Nous ferons un survol des différentes propositions de fonctions de hachage cryptographiques fondées sur des groupes de matrices et dont il fut question en particulier à Eurocrypt 2008. Ces fonctions s'appuient sur un principe général simple: toute suite de symboles détermine une suite d'éléments du groupe et la valeur de la fonction est le produit de ces éléments. Les propriétés arithmétiques du groupe se traduisent alors par des propriétés désirables de la fonction de hachage. Nous examinerons les forces et faiblesses de ces shémas.
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-