Sommaire

  • Cet exposé a été présenté le 12 décembre 2008.

Description

  • Orateur

    Anna Morra - Bordeaux I

Soit k un corps de nombres. En théorie des nombres, on s'intéresse souvent au problème de compter les extensions de k de degré n fixé, et de discriminant borné, en ajoutant éventuellement des conditions sur la clôture de leur groupe de Galois.<br/> Après avoir rappelé rapidement quelques résultats connus, on va présenter un travail fait en collaboration avec Henri Cohen. Le but est de compter les classes d'isomorphisme d'extensions cubiques K sur k telles que la clôture du groupe de Galois contient une sous-extension quadratique K_2 fixée. On donne une formule asymptotique explicite pour ces classes, ordonnées par la norme de leur idéal discriminant relatif.<br/> L'instrument principal est la théorie de Kummer. Le cas des extensions cubiques cycliques peut être traitée avec des méthodes similaires.

Prochains exposés

Voir les exposés passés