Description
Nous étudions la notion de suites asymptotiquement exactes de corps de fonctions algébriques introduite par Tsfasman en 1991. Plus précisément, nous construisons explicitement des suites asymptotiquement exactes de corps de fonctions algébriques définis sur des corps finis quelconques, en particulier quand q n'est pas un carré. Ensuite, nous prouvons que ces suites constituent des familles infinies de corps de fonctions algébriques dont le nombre de classes $h$ dépasse strictement la borne de Lachaud - Martin-Deschamps. En particulier, nous construisons une tour asymptotiquement exacte avec densité maximale de corps de fonctions algébriques définis sur $\F_2$ et donnons aussi d'autres exemples.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York