Description
Traditionally, cryptographic algorithms provide security against an adversary who has only black box access to cryptographic devices. That is, the only thing the adversary can do is to query the cryptographic algorithm on inputs of its choice and analyze the responses, which are always computed according to the correct original secret information. However, such a model does not always correspond to the realities of physical implementations. During the last decade, significant attention has been paid to the physical security evaluation of cryptographic devices. In particular, it has been demonstrated that actual attackers may be much more powerful than what is captured by the black box model. For example, they can actually get a side-channel information, based on the device's physical computational steps. As a consequence, some kind of obfuscation is required to protect integrated circuits from these physical attacks. This is especially important for small embedded devices (e.g. smart card, RFIDs, sensor networks, ...) that can typically be under and adversary's control for a short period of time. This implies new theoretical concerns (how to exactly model and evaluate these physical threats) and practical ones (how to prevent them). In this talk, I will discuss different results in the area of side-channel attacks, with a particular focus on formal tools that can be used to evaluate physical security on a fair basis. Starting from an introductive view of the field, I will describe some well known attacks and countermeasures, present a framework for the analysis of side-channel key-recovery from Eurocrypt 2009 and finally discuss the connection of this framework with recent works in leakage-resilient cryptography.
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Présentations des nouveaux doctorants Capsule
Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Orateur : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]