Sommaire

  • Cet exposé a été présenté le 15 octobre 2010.

Description

  • Orateur

    Eimar Byrne - University College Dublin

In the 1960s, Berlekamp introduced the negacyclic codes over GF(p) and described an efficient decoder that corrects any t Lee errors, where p > 2t. We consider this family of codes, defined over the integers modulo 4. We show that if a generator polynomial for a Z4 negacyclic code C has roots a^{2j+1} for j=0,...,t, where a is a primitive 2n th root of unity in a Galois extension of Z4, then C is a t Lee error-correcting code. We present a corresponding decoding algorithm that corrects any t Lee errors. The treatment given here uses techniques from Groebner bases, although this is not essential to the decoding method.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.  Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés