Description
It is a curious fact that most efficient algorithms for solving algebraic equations over finite fields are probabilistic. In this talk, I will give an overview over deterministic techniques that are applicable. The case of constructing rational points on elliptic curves is especially relevant for cryptographic applications. I will give a detailed exposition of my algorithm for this purpose and also discuss the complexity from various viewpoints.
Prochains exposés
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Orateur : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-