Sommaire

  • Cet exposé a été présenté le 06 mai 2011.

Description

  • Orateur

    Marc Manulis - Technische Universität Darmstadt

Users increasingly rely on the ``social cloud'' for storing and sharing personal information, for establishing new contacts, and for interacting with their friends and colleagues. Even though social media platforms may differ in the target audience, in the nature of collected and disseminated information, and in services offered to the users, there are several building blocks that enable user's social interactions and are deployed by the majority of these platforms. Designing these building blocks in a secure and privacy-preserving way is of utmost importance, should potential damage from the misuse of user-provided content in the existing ``social cloud'' be averted.<br/> Due to the absence of appropriate models and security/privacy definitions it is, so far, impossible to judge, whether a proposed protection mechanism is suitable or not, whether it can be applied in general, or is tailored to a specific social media platform. Instead of using ``ad-hoc'' and ``best practice'' solutions with questionable guarantees, it is advisable to strive for a more formal treatment of the underlying building blocks by providing sophisticated security/privacy definitions and designing solutions amenable to formal reasoning and security proofs.<br/> In the first part of my talk I will focus on the management of personal user profiles. User profiles serve as a main building block for most social media platforms. I will introduce a formal cryptographic model for \emph{private} user profiles, supporting generation of the digital content owned by the user and its controlled disclosure to other users of the social community. I will present formal definitions of security and privacy that reflect the natural expectations on private profiles. I will further describe two general solutions based on different encryption techniques and highlight their trade-offs from the security/privacy and complexity point of view. These solutions do not require any specific network infrastructure or any trusted third parties. The provided analysis takes into account statistics of several real-world social media platforms. The second part of my talk will address the problem of discovery of common social contacts, for which I will introduce the first privacy-friendly practical solution that lets two users, on input their respective contact lists, learn their common contacts (if any), and nothing else. The proposed protocol prevents arbitrary list manipulation by means of contact certification, and guarantees user authentication and revocability. I will explain why current approaches such as private set intersection or anonymous credentials, although being related, do not provide an appropriate solution to this problem. I will discuss the modeling of contact-hiding security that private contact discovery should provide. I will also highlight efficiency considerations for the proposed protocol that does not require involvement of any trusted third parties and can be deployed in resource-constraint environments.<br/> The content of this talk is based on the recent results from FC 2011/RLCSP, ASIACCS 2011, and ACNS 2011.

Prochains exposés

  • Efficient zero-knowledge proofs and arguments in the CL framework

    • 07 mars 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Agathe Beaugrand - Institut de Mathématiques de Bordeaux

    The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…]
  • Constant-time lattice reduction for SQIsign

    • 14 mars 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Sina Schaeffler - IBM Research

    SQIsign is an isogeny-based signature scheme which has recently advanced to round 2 of NIST's call for additional post-quantum signatures. A central operation in SQIsign is lattice reduction of special full-rank lattices in dimension 4. As these input lattices are secret, this computation must be protected against side-channel attacks. However, known lattice reduction algorithms like the famous[…]
  • Circuit optimisation problems in the context of homomorphic encryption

    • 21 mars 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Sergiu Carpov - Arcium

    Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but[…]
  • Cycles of pairing-friendly abelian varieties

    • 28 mars 2025 (13:45 - 14:45)

    • Salle Guernesey, ISTIC

    Orateur : Maria Corte-Real Santos - ENS Lyon

    A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first[…]
    • Cryptography

  • Journées C2

    • 04 avril 2025 (00:00 - 18:00)

    • Pornichet

Voir les exposés passés