Description
Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems. Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner in 1991 seems to achieve the best time/quality compromise in practice. However, no reasonable time complexity upper bound was known so far for BKZ. We give a proof that after O~(n^3/k^2) calls to a k-dimensional HKZ reduction subroutine, BKZ_k returns a basis such that the norm of the first vector is at most ~= gamma_k ^ (n/2(k-1)) * det(L)^(1/n). The main ingredient of the proof is the analysis of a linear dynamic system related to the algorithm.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-