Sommaire

  • Cet exposé a été présenté le 27 mai 2011.

Description

  • Orateur

    Xavier Pujol - ENS Lyon

Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems. Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner in 1991 seems to achieve the best time/quality compromise in practice. However, no reasonable time complexity upper bound was known so far for BKZ. We give a proof that after O~(n^3/k^2) calls to a k-dimensional HKZ reduction subroutine, BKZ_k returns a basis such that the norm of the first vector is at most ~= gamma_k ^ (n/2(k-1)) * det(L)^(1/n). The main ingredient of the proof is the analysis of a linear dynamic system related to the algorithm.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.  Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés