Sommaire

  • Cet exposé a été présenté le 07 février 2014.

Description

  • Orateur

    Maria Cristina Onete - IRISA

Authentication protocols, run between a prover and a verifier, allow the verifier to check the legitimacy of the prover. A legitimate prover should always authenticate (the correctness requirement), while illegitimate parties (adversaries) should not authenticate (the soundness or impersonation resistance requirement). Secure authentication protocols thwart most Man-in-the-Middle (MIM) attacks, such as replays, but they do not prevent relay attacks , where a coalition of two adversaries, a leech and a ghost , forwards messages between an honest verifier and an honest, far-away prover so as to let the illegitimate ghost authenticate.<br/> Distance-bounding protocols strengthen the security of authentication so as to prevent pure relaying, by enabling the verifier to upper-bound his distance to the prover. This is done by adding a number of time-critical challenge-response rounds, where bits are exchanged over a fast channel; the verifier measures the challenge-response roundtrip and compares it to a time-based proximity bound. There are four attacks such protocols should prevent: mafia fraud, where a MIM adversary tries to authenticate in the presence of a far-away (honest) prover, without purely relaying messages (the clock prevents this); terrorist fraud, where the prover is dishonest and helps the MIM adversary authenticate insofar as this help does not give the adversary any advantage for future (unaided) authentication; distance fraud, where a far-away prover wants to prove he is within the verifier's proximity; and (lazy-round) impersonation security, requiring a degree of impersonation security even for the exchanges that are not timed. Constructing distance-bounding protocols is a highly non-trivial task, since often providing security against one requirement creates a vulnerability with respect to a different requirement. I propose to describe how to construct distance-bounding protocols which are probably secure and also guarantee the prover's privacy.

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.&nbsp; Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés