Description
Reed-Solomon codes have optimal minimum distance and we know efficient encoding and decoding algorithms of quasi-linear complexity in the length. Their main drawback is that their lengths are bounded by the size of the alphabet, i.e. the field over which they are defined. Algebraic geometry codes are a generalisation allowing longer codes on the same alphabet, and one of the most interesting sub-families of these are the Hermitian codes. The price for the greater length is more complicated computations: so far, no decoding algorithm with sub-quadratic complexity in the length of the code was known. We show how to achieve this by building the decoder around the problem of finding a short vector in an F[x]-module, and performing this step using state-of-the-art algorithms from computer algebra. This approach follows recent trends in decoding of Reed-Solomon codes. Furthermore, our decoder is a "Power decoder", probabilistically capable of decoding errors beyond half-the-minimum distance for low-rate codes.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York