Sommaire

  • Cet exposé a été présenté le 16 janvier 2015.

Description

  • Orateur

    Emmanuel Hallouin - Université de Toulouse 2

Je commencerai par rappeler l'esprit de la preuve initiale de Weil pour la majoration du nombre de points d'une courbe projective lisse définie sur un corps fini. En particulier, j'insisterai sur le fait qu'elle découle de contraintes euclidiennes dans un espace euclidien bien choisi. Ensuite je montrerai comment cette borne de Weil peut être vue comme la borne d'ordre 1 d'une classe de bornes de Weil généralisées d'ordre n pour n \geq 1. Avec ce point de vue, la borne de Weil généralisée d'ordre 2 n'est rien d'autre que la borne d'Ihara. Quant aux bornes d'ordres supérieurs, elles étaient, a priori, inconnues sous cette forme.

Prochains exposés

Voir les exposés passés