Description
Je commencerai par rappeler l'esprit de la preuve initiale de Weil pour la majoration du nombre de points d'une courbe projective lisse définie sur un corps fini. En particulier, j'insisterai sur le fait qu'elle découle de contraintes euclidiennes dans un espace euclidien bien choisi. Ensuite je montrerai comment cette borne de Weil peut être vue comme la borne d'ordre 1 d'une classe de bornes de Weil généralisées d'ordre n pour n \geq 1. Avec ce point de vue, la borne de Weil généralisée d'ordre 2 n'est rien d'autre que la borne d'Ihara. Quant aux bornes d'ordres supérieurs, elles étaient, a priori, inconnues sous cette forme.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York