Sommaire

  • Cet exposé a été présenté le 26 juin 2015.

Description

  • Orateur

    Alain Passelègue - ENS

Pseudorandom functions (PRFs) are one of the most fundamental primitives in cryptography. In this work, we provide a new algebraic framework which encompasses many of the existing algebraic PRFs, including the ones by Naor and Reingold (FOCS'97), by Lewko and Waters (CCS'09), and by Boneh, Montgomery, and Raghunathan (CCS'10), as well as the related-key-secure PRFs by Bellare and Cash (Crypto'10) and by Abdalla \etal (Crypto'14). To achieve this goal, we introduce two versions of our framework. The first, termed linearly independent polynomial security, states that the values $(g^{P_1(\vec{a})}, \ldots, g^{P_q(\vec{a})})$ are indistinguishable from a random tuple of the same size, when $P_1, \ldots, P_q$ are linearly independent multivariate polynomials of the secret key vector $\vec{a}$. The second, which is a natural generalization of the first framework, additionally deals with constructions based on the decision linear and matrix Diffie-Hellman assumptions. In addition to unifying and simplifying proofs for existing schemes, our new framework also yields several new results, such as related-key security with respect to arbitrary permutations of polynomials. All our constructions are in the standard model and do not require the existence of multilinear maps.

Prochains exposés

  • Dual attacks in code-based (and lattice-based) cryptography

    • 19 septembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Charles Meyer-Hilfiger - Inria Rennes

    The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

Voir les exposés passés