Description
This talk is about computing discrete logarithms in non-prime finite fields. These fields arise in pairing-based cryptography. In this setting, the pairing-friendly curve is defined over GF(q) and the pairing takes its values in an extension GF(q^k), where k is the embedding degree.<br/> Fr example, GF(p^2) is the embedding field of supersingular elliptic curves in large characteristic; GF(p^3), GF(p^4), GF(p^6) are the embedding fields of MNT curves, and GF(p^12) is the embedding field of the well-known Barreto-Naehrig curves. In small characteristic, GF(2^(4*n)), GF(3^(6*m)) are considered. To compute discrete logarithms in these fields, one uses the Number Field Sieve algorithm (NFS) in large characteristic (e.g. GF(p^2)), the NFS-High-Degree variant (NFS-HD) in medium characteristic (e.g. GF(p^12)) and the Quasi Polynomial-time Algorithm (QPA) in small characteristic when applicable. These algorithms are made of four steps: polynomial selection, relation collection, linear algebra modulo the prime order of the target group and finally, individual logarithm computation.<br/> All these finite fields are extensions, hence have subfields. We use their structure to speed-up the individual discrete logarithm computation. We obtain an important speed-up in practice and the best case is when the embedding degree k is even. We will illustrate the improvements with the practical case of GF(p^4) with p^4 of 400 bits (120 decimal digits).
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Présentations des nouveaux doctorants Capsule
Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Orateur : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]