Sommaire

  • Cet exposé a été présenté le 13 novembre 2015.

Description

  • Orateur

    Aurore Guillevic - Inria Saclay, équipe Grace et Ecole Polytechnique, LIX

This talk is about computing discrete logarithms in non-prime finite fields. These fields arise in pairing-based cryptography. In this setting, the pairing-friendly curve is defined over GF(q) and the pairing takes its values in an extension GF(q^k), where k is the embedding degree.<br/> Fr example, GF(p^2) is the embedding field of supersingular elliptic curves in large characteristic; GF(p^3), GF(p^4), GF(p^6) are the embedding fields of MNT curves, and GF(p^12) is the embedding field of the well-known Barreto-Naehrig curves. In small characteristic, GF(2^(4*n)), GF(3^(6*m)) are considered. To compute discrete logarithms in these fields, one uses the Number Field Sieve algorithm (NFS) in large characteristic (e.g. GF(p^2)), the NFS-High-Degree variant (NFS-HD) in medium characteristic (e.g. GF(p^12)) and the Quasi Polynomial-time Algorithm (QPA) in small characteristic when applicable. These algorithms are made of four steps: polynomial selection, relation collection, linear algebra modulo the prime order of the target group and finally, individual logarithm computation.<br/> All these finite fields are extensions, hence have subfields. We use their structure to speed-up the individual discrete logarithm computation. We obtain an important speed-up in practice and the best case is when the embedding degree k is even. We will illustrate the improvements with the practical case of GF(p^4) with p^4 of 400 bits (120 decimal digits).

Prochains exposés

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

  • Post-Quantum Public-Key Pseudorandom Correlation Functions for OT

    • 12 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mahshid Riahinia - ENS, CNRS

    Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…]
  • Predicting Module-Lattice Reduction

    • 19 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

Voir les exposés passés