Description
Public key cryptography is based on hard problems, such as the discrete logarithm problem (DLP). In this talk, I focus on the discrete logarithm problem in finite fields:<br/> Given GF(q^k) and a generator g of GF(q^k)*, we say that we solve the DLP in GF(q^k) if, for any arbitrary element h in GF(q^k)*, we are able to recover an integer x such that: g^x = h. When the characteristic is small compared to the extension degree, the best complexity that can be achieved is quasipolynomial in log(q^k). I present here a simplified version of this quasipolynomial algorithm that has several advantages:<br/> 1/ I swear it is simple, or at least I will do my best to make it understandable.<br/> 2/ Together with additional ideas, simplifying the original settings permits to decrease the complexity of relation collection, linear algebra and extension phases, that dominate in practice all discrete logarithms computations. Namely, the complexity is reduced from O(q^7) to O(q^6). 3/ With our simplified settings, the complexity achieved in the general case became similar to the complexity known for Kummer (or twisted Kummer) extensions. Thus it permitted to achieve a discrete log computation in GF_(3^(5*497)), that is not only the highest cardinality reached in characteristic 3, but also not a special extension field as previous target fields were.<br/> This is a joint work with Antoine Joux.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York