Description
Hard learning problems (e.g., LPN, LWE and their variants) are attractive topics recently in the cryptographic community due to the numerous cryptosystems (symmetric or public-key) based on them. Normally these systems employ an instantiation of the underlying problem with a large dimension and relatively small noise to ensure the security and the high decryption success probability, respectively. In the famous BKW algorithm, Blum et al. first pointed out that balancing these two parameters plays a key role in solving these hard instances. Along their path, I will present a new idea to form better dimension-bias trade-offs by using coding theory, thereby resulting in better solutions. Lattice codes are used for solving LWE, and covering codes for LPN. Moreover, I will also present an improved method if additional algebraic structures are provided (e.g., in the reducible Ring-LPN case).
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-