Description
Hard learning problems (e.g., LPN, LWE and their variants) are attractive topics recently in the cryptographic community due to the numerous cryptosystems (symmetric or public-key) based on them. Normally these systems employ an instantiation of the underlying problem with a large dimension and relatively small noise to ensure the security and the high decryption success probability, respectively. In the famous BKW algorithm, Blum et al. first pointed out that balancing these two parameters plays a key role in solving these hard instances. Along their path, I will present a new idea to form better dimension-bias trade-offs by using coding theory, thereby resulting in better solutions. Lattice codes are used for solving LWE, and covering codes for LPN. Moreover, I will also present an improved method if additional algebraic structures are provided (e.g., in the reducible Ring-LPN case).
Prochains exposés
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-