Description
Après des rappels sur les courbes elliptiques et les isogénies, on va présenter le problème que l'on veut résoudre: soit deux courbes elliptiques E,E' définies sur un corps fini (de caractéristique p) que l'on sait r-isogénes alors on souhaite calculer la r-isogénie qui les relie. De nombreux algorithmes ont résolu ce problème par le passé notamment l'algorithme de Couveignes de 1996 qui sera détaillé dans l'exposé. Cependant celui-ci a des limites notamment lorsque l'on travaille sur des corps de caractéristique de taille moyenne. On va donc voir comment s'affranchir de cette limite en travaillant avec la \ell-torsion à la place de la p-torsion. Cette modification apporte cependant des difficultés qu'il faut surmonter afin d'atteindre une complexité quasi quadratique en r (le degré de l'isogénie), il sera donc montré quelles restrictions supplémentaires on doit faire sur la \ell-torsion pour atteindre cette complexité. Enfin si le temps le permet il sera abordé plus en détail en quoi l'utilisation des tours d'extensions \ell-adique d'après le travail de De Feo, Doliskani, Schost 2013 est nécessaire à notre algorithme pour obtenir la complexité souhaitée. Ce travail est un travail conjoint avec Luca De Feo, Jérome Plut et Eric Schost.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-