Sommaire

  • Cet exposé a été présenté le 10 février 2017.

Description

  • Orateur

    Valentin Suder - Université de Versailles Saint-Quentin

Dans ce travail, nous nous intéressons aux permutations complètes, c’est-à-dire aux fonctions bijectives $x\mapsto f(x)$ telles que $x\mapsto f(x)+x$ soient aussi bijectives. Plus particulièrement, nous nous intéressons aux permutations complètes sur les corps finis $\mathbb{F}_{2^n}$. En caractéristique 2, la définition des permutations complètes coincide avec celle des orthomorphismes. Nous pouvons donc utiliser cette correspondance pour mettre à jour plus de propriétés et de résultats de ces objets combinatoires. En effet, malgré la multitude de travaux se concentrant sur les permutations complètes (et orthomorphismes) apparus depuis l’introduction du concept par Mann dans les années 40, il semble que peu de propriétés générales ou de classes de telles fonctions soient connues. Parmi ces classes de fonctions, la plupart sont monômiales, binômiales voire trinômiales et/ou affines. Dans cet exposé, nous commencerons par introduire la notion de permutations complètes ainsi que les propriétés de bases, et montrerons quelques unes des applications les plus courantes. Nous verrons donc les problèmes héritée s de ces applications. Dans un second temps, nous démontrerons quelques nouvelles propriétés des permutations complètes. Nous ré-explorons aussi le lien entre polynômes de permutations cyclotomiques et permutations complètes et caractérisons complètement les ‘permutations complètes cyclotomiques’ dans le cas des corps finis en caractéristique 2. Nous conclurons en proposant, par le biais d’un certains nombre de conjectures et d’observations sur ces nouvelles classes, une extension ‘géométrique’ des permutations complètes aux partitions régulières sur les corps finis.

Prochains exposés

  • Combining Partial Sums and FFT for the Fastest Known Attack on 6‑Round AES

    • 17 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Shibam Ghosh - Inria

    The partial-sums technique introduced by Ferguson et al. (2000) achieved a 6‑round AES attack with time complexity 2^{52} S‑box evaluations, a benchmark that has stood since. In 2014, Todo and Aoki proposed a comparable approach based on the Fast Fourier Transform (FFT).  In this talk, I will show how to combine partial sums with FFT to get "the best of both worlds". The resulting attack on 6[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Voir les exposés passés