Sommaire

  • Cet exposé a été présenté le 08 décembre 2017.

Description

  • Orateur

    Alexandre Gelin - Versailles-Saint-Quentin-en-Yvelines

In this talk, we focus on class group computations in number fields. We start by describing an algorithm for reducing the size of a defining polynomial of a number field. There exist infinitely many polynomials that define a specific number field, with arbitrarily large coefficients, but our algorithm constructs the one that has the absolutely smallest coefficients. The advantage of knowing such a ``small'' defining polynomial is that it makes calculations in the number field easier because smaller values are involved. In addition, thanks to such a small polynomial, one can use specific algorithms that are more efficient than the general ones for class group computations.<br/> The generic algorithm to determine the structure of a class group is based on ideal reduction, where ideals are viewed as lattices. We describe and simplify the algorithm presented by Biasse and Fieker in 2014 at ANTS and provide a more thorough complexity analysis for it. We also examine carefully the case of number fields defined by a polynomial with small coefficients. We describe an algorithm similar to the Number Field Sieve, which, depending on the field parameters, may reach the hope for complexity L(1/3). Finally, our results can be adapted to solve an associated problem: the Principal Ideal Problem. Given any basis of a principal ideal (generated by a unique element), we are able to find such a generator. As this problem, known to be hard, is the key-point in several homomorphic cryptosystems, the slight modifications of our algorithms provide efficient attacks against these cryptographic schemes.

Prochains exposés

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Voir les exposés passés