Description
Number systems are behind a lot of implementations. The role of representation is often underrated while its importance in implementation is crucial. We survey here some classes of fundamental systems that could be used in crypotgraphy. We present three main categories:<br/> - systems based on the Chinese Remainder Theorem which enter more generally in the context of polynomial interpolation,<br/> - exotic positional number representations using original approaches,<br/> - systems adapted to operations like the exponentiation.<br/> We stay at the level of the representation system, we do not deal with all the decomposition forms that can be used for accelerating the computation.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=728862***9707&autojoin
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York