Sommaire

  • Cet exposé a été présenté le 08 février 2019.

Description

  • Orateur

    Jean-Claude Bajard - Sorbonne Université

Number systems are behind a lot of implementations. The role of representation is often underrated while its importance in implementation is crucial. We survey here some classes of fundamental systems that could be used in crypotgraphy. We present three main categories:<br/> - systems based on the Chinese Remainder Theorem which enter more generally in the context of polynomial interpolation,<br/> - exotic positional number representations using original approaches,<br/> - systems adapted to operations like the exponentiation.<br/> We stay at the level of the representation system, we do not deal with all the decomposition forms that can be used for accelerating the computation.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=728862***9707&autojoin

Prochains exposés

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • 06 juin 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Voir les exposés passés