Description
Finding a short non zero vector in an Euclidean lattice is a well-studied problem which has proven useful to construct many cryptographic primitives. The current best asymptotic algorithm to find a relatively short vector in an arbitrary lattice is the BKZ algorithm. This algorithm recovers a vector which is at most $2^{n^{\alpha}}$ times larger than the shortest non zero vector in time $2^{n^{1-\alpha}}$ for any $\alpha$ between 0 and 1.<br/> In order to gain in efficiency, it is sometimes interesting to use structured lattices instead of general lattices. An example of such structured lattices are ideal lattices. One may then wonder whether, on the security front, it is easier to find short vectors in a structured lattice or not. Until 2016, there was no known algorithm which would perform better on ideal lattices than the BKZ algorithm (either classically or quantumly). In 2016 and 2017, Cramer-Ducas-Peikert-Regev and Cramer-Ducas-Wesolowski proposed a quantum algorithm that finds a $2^{\sqrt n}$ approximation of the shortest non zero vector in polynomial time. However, the BKZ algorithm remained the best algorithm in the classical setting or for approximation factor smaller than $2^{\sqrt n}$ in the quantum setting.<br/> In this talk, I will present an algorithm that extends the one of Cramer et al. and improves upon the BKZ algorithm for ideal lattices, both quantumly and classically. This algorithm is heuristic and non uniform (i.e., it requires an exponential time pre-processing).<br/> lien: http://desktop.visio.renater.fr/scopia?ID=723420***3028&autojoin
Prochains exposés
-
Structured-Seed Local Pseudorandom Generators and their Applications
Orateur : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Orateur : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-