Sommaire

  • Cet exposé a été présenté le 08 novembre 2019.

Description

  • Orateur

    Nicolas Aragon - Université de Limoges, exceptionnellement salle Jersey à l'ISTIC

In the past few years, the interest for rank metric based cryptography has drastically increased, especially since the beginning of the NIST Post-Quantum Cryptography standardization process : five rank metric based proposals were submitted to the first round. This talk will present the different approaches and tradeoffs for building Key Encapsulation Mechanisms and Public Key Encryption schemes based on the rank metric, as well as the recent works on digital signature schemes.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=725941***7609&autojoin

Prochains exposés

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.&nbsp; Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

  • Euclidean lattice and PMNS: arithmetic, redundancy and equality test

    • 31 janvier 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Fangan Yssouf Dosso - Laboratoire SAS, École des Mines de Saint-Étienne

    The Polynomial Modular Number System (PMNS) is an integer number system that aims to speed up arithmetic operations modulo a prime number p. This system is defined by a tuple (p, n, g, r, E), where p, n, g and r are positive integers, and E is a polynomial with integer coefficients, having g as a root modulo p.&nbsp;Arithmetic operations in PMNS rely heavily on Euclidean lattices. Modular[…]
Voir les exposés passés