Description
This talk focuses on a new variant of the Learning With Errors (LWE) problem, a fundamental computational problem used in lattice-based cryptography.<br/> At Crypto17, Roşca et al. introduced the Middle-Product LWE problem (MP-LWE), whose hardness is based on the hardness of the Polynomial LWE (P-LWE) problem parameterized by a large set of polynomials, making it more secure against the possible weakness of a single defining polynomial. As a cryptographic application, they also provided an encryption scheme based on the MP-LWE problem. In this talk, I present a deterministic variant of their encryption scheme, which does not need Gaussian sampling and is thus simpler than the original one. Still, it has the same quasi-optimal asymptotic key and ciphertext sizes. The hardness of the scheme is based on a new assumption called Middle-Product Computational Learning With Rounding. We prove that this new assumption is as hard as the decisional version of MP-LWE and thus benefits from worst-case to average-case hardness guarantees.<br/> lien: http://e-learning.sviesolutions.com/4bl7vxoqql0b
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York