Description
Continuous group key agreements (CGKAs) are a class of protocols that can provide strong security guarantees to secure group messaging protocols such as Signal and MLS. Protection against device compromise is provided by commit messages: at a regular rate, each group member may refresh their key material by uploading a commit message, which is then downloaded and processed by all the other members. In practice, propagating commit messages dominates the bandwidth consumption of existing CGKAs. We propose Chained CmPKE, a CGKA with an asymmetric bandwidth cost: in a group of N members, a commit message costs O(N) to upload and O(1) to download, for a total bandwidth cost of O(N). In contrast, TreeKEM costs Ω(log N) in both directions, for a total cost Ω(N logN). Our protocol relies on generic primitives, and is therefore readily post-quantum.<br/> We go one step further and propose post-quantum primitives that are tailored to Chained CmPKE, which allows us to cut the growth rate of uploaded commit messages by two or three orders of magnitude compared to naive instantiations. Finally, we realize a software implementation of Chained CmPKE. Our experiments show that even for groups with a size as large as N=2^10, commit messages can be computed and processed in less than 100 ms.<br/> This talk is based on joint work with Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite and Bas Westerbaan. Link to the full article: https://eprint.iacr.org/2021/1407.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Prochains exposés
-
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Attacks and Remedies for Randomness in AI: Cryptanalysis of PHILOX and THREEFRY
Orateur : Yevhen Perehuda - Ruhr-University Bochum
In this work, we address the critical yet understudied question of the security of the most widely deployed pseudorandom number generators (PRNGs) in AI applications. We show that these generators are vulnerable to practical and low-cost attacks. With this in mind, we conduct an extensive survey of randomness usage in current applications to understand the efficiency requirements imposed in[…]-
Cryptography
-
-
Lightweight (AND, XOR) Implementations of Large-Degree S-boxes
Orateur : Marie Bolzer - LORIA
The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]-
Cryptography
-
Symmetrical primitive
-
Implementation of cryptographic algorithm
-
-
Algorithms for post-quantum commutative group actions
Orateur : Marc Houben - Inria Bordeaux
At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-