Sommaire

  • Cet exposé a été présenté le 26 novembre 2021.

Description

  • Orateur

    André Schrottenloher - CWI

The security of modern cryptosystems relies on computational assumptions, which may be challenged by the advent of large-scale quantum computing devices.<br/> While Shor's algorithm is known to break today's most popular public-key schemes, secret-key cryptosystems are generally expected to retain half of their pre-quantum bits of security. However, the precise advantage of quantum attacks cannot be determined without a dedicated analysis.<br/> In this talk, we will focus on key-recovery attacks against block ciphers. These attacks are often categorized in two scenarios, depending on the type of black-box access allowed to the adversary: either a classical query access, or a "quantum" query access where the black-box is part of the adversary's quantum algorithm. Attacks with classical queries, which are deemed more realistic, have so far complied with the rule of halving security levels.<br/> On the contrary, attacks with quantum queries can break some classically secure designs which exhibit a strong algebraic structure (Kuwakado & Morii, ISIT 2010).<br/> Exploiting this structure with classical queries only was the goal of the offline-Simon algorithm of Bonnetain et al. (ASIACRYPT 2019). In the final part of this talk, we will show that this algorithm allows to reach a more than quadratic speedup against some specific block cipher constructions. This is joint work with Xavier Bonnetain and Ferdinand Sibleyras.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09

Prochains exposés

  • Computational assumptions in the quantum world

    • 22 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Alex Bredariol Grilo - LIP6 (CNRS / Sorbonne Université)

    QKD is a landmark of how quantum resources allow us to implement cryptographicfunctionalities with a level of security that is not achievable only with classical resources.However, key agreement is not sufficient to implement all functionalities of interest, and it iswell-known that they cannot be implemented with perfect security, even if we have accessto quantum resources. Thus, computational[…]
    • Cryptographie

  • Polytopes in the Fiat-Shamir with Aborts Paradigm

    • 29 novembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Hugo Beguinet - ENS Paris / Thales

    The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution.&nbsp; Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]
    • Cryptographie

    • Primitive asymétrique

    • Mode et protocole

  • Post-quantum Group-based Cryptography

    • 20 décembre 2024 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Delaram Kahrobaei - The City University of New York

Voir les exposés passés